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Group algebras and tensor operators 
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MS received 10 January 1972 

Abstract. The conditions under which class sum operators for a finite group are hermitian 
are discussed. A class of linear mappings within the group algebra is treated, together with 
methods of obtaining elements which are symmetry adapted with respect to these mappings. 
Traditional tensor operators are treated as symmetry adapted elements of the group algebra, 
and the absence of certain types of tensor operator from the group algebra of direct product 
groups is discussed. The relevance of the work to operator equivalent theory is briefly 
indicated. 

1. Introduction 

The commuting operator approach to finite group theory (Killingbeck 1970a,b) treats 
group representation theory in the spirit of the Dirac approach to quantum mechanics. 
If we formally allow addition of group elements (ie use the group algebra) then the sum 
of the elements within one class of the group is called a class sum. The various class 
sums commute with one another and thus yield a set of commuting operators Wj if 
the group elements are represented by linear operators as is usual in quantum mechanics. 
Each irreducible representation of the group is then labelled by a set of eigenvalues of 
the commuting class sum operators W j ,  and within a two (or more) dimensional repre- 
sentation the different functions can be further labelled by eigenvalues of some single 
group operator (since each single group element also commutes with all the class sums). 
With this approach it is possible to simplify the theory of Kronecker products, projection 
operators and tensor operators. In an earlier paper (Killingbeck 1970a) the general 
theory was outlined, and the particular point group 6m2 which appears as the crystal 
field symmetry group for several rare earth salts, was used to illustrate the procedures 
of the theory. The present paper re-investigates the form of some of the particular 
results obtained for 6m2 and shows that it is common to a wide class of groups. This 
leads to some new topics within the general theory. Section 2 makes some comments 
concerning simply reducible groups and the hermiticity of the class sum operators. 
Section 3 describes several types of linear mapping within the group algebra and shows 
that one of them leads to the regular representation of the group while another is that 
needed in the traditional tensor operator definition of quantum mechanics. The 
adaptation of the usual projection operator and character analysis methods to the 
construction of tensor operator elements within the group algebra is described. Section 4 
applies this to 6m2 pointing out that the nonappearance of certain types of tensor 
operator elements within the 6m2 group algebra is a special case of a general result 
concerning direct product groups. Section 5 concludes with some remarks on operator 
equivalent theory. At one or two points a distinction is drawn between abstract elements 
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(of a group or algebra) and the operators which represent them. However, as noted 
previously (Killingbeck 1970b), questions involving hermiticity, unitarity, etc only arise 
for groups of operators. 

2. Simple reducibility for point groups 

Since each of the n(') functions belonging to the Ath irreducible representation has an 
eigenvalue p(.''(Cej) for the jth class sum element, it follows that the characters xj") of the 
representations obey the relation 

(This form of the relationship is independent of any numerical factors which may be 
included in the definition of the class sums.) Traditional character tables thus show, 
for example, that the eigenvalues of the class sum elements qj for the group 6m2 are all 
real (Killingbeck 1970a). This feature can be maintained for any group within which 
the class sum operators are all hermitian, and it is in such cases that the analogy with 
Dirac theory will be strongest, since Dirac theory uses sets of commuting observables 
(ie hermitian operators). The individual group elements for the usual point groups 
are represented by unitary linear operators, and so for an abelian point group the class 
sum operators will be unitary. This will not be so for a nonabelian group, except for 
the special cases of the zero rotation and rotations through angle n, which are both 
unitary and hermitian when considered as operators. If, however, each unitary group 
operator R belongs to the same class as its inverse, R-' = R', it follows that each class 
sum operator is a sum of terms of form R + Rt  and is accordingly hermitian. Wigner 
(1940) made a detailed study of simply reducible groups, which he defined to have the 
properties: (i) An element and its inverse always belong to the same class. (ii) The 
Kronecker product of two irreducible representations contains any given irreducible 
representation not more than once. The property (ii) means that various diagonal 
sum rule procedures work for simply reducible groups ; Wigner's work was mainly 
directed to showing that much of the formalism concerning even and odd representations, 
3j and 6j symbols etc, which applies for the rotation group R,, can be naturally extended 
to apply to any simply reducible group. The definition of simple reducibility used by 
Wigner applies for both finite groups and continuous groups (such as R 3 ) ;  Lomont 
(1959) gives an alternative definition for finite groups ; a finite group is simply reducible if 

where the sums are over all group elements, B(R) is the number of square roots of R 
and b(R) is the number of elements which commute with R.  Neither in Wigner's work 
nor in the rest of the literature does there seem to be any comment on the relationshp 
between conditions (i) and (ii) mentioned above. However, a survey of the point groups 
known to solid state physicists actualiy provides sufficient examples to show that (i) 
and (ii) are logically independent (although they are both fulfilled by most crystal point 
groups used in practice). For example, the cyclic group 3 fulfills condition (ii) but not 
condition (i). The icosahedral group P (Judd 1957) fulfils condition (i) but not condition 
(ii). The group 23 of symmetry rotations of a regular tetrahedron fulfils neither (i) nor 
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(ii). If n(’) is the dimension of the Ath irreducible representation of a group, and n(max) 
is the largest of the d”’, it is clearly sufficient that the condition 

should be obeyed in order to violate condition (ii). Both the icosahedral group P and 
the group 23 satisfy condition (3). 23 has n@) values (1,1,1,3) and also has rotations 
through angles 2n/3 and 4 4 3  which belong to different classes. The interesting point 
about condition (i) as far as the present discussion is concerned is that any point group 
which satisfies it will give hermitian class sum operators qj; this makes the parallel 
between the class sum operator approach and the Dirac commuting observables approach 
as close as possible. As the discussion above shows, the group P satisfies (i), as do the 
simply reducible groups, whereas cyclic groups such as 3 and 6 do not. However, abelian 
groups such as 2 and 222 involving rotations through angle II have class sum operators 
which are simultaneously unitary and hermitian, and obey condition (i). Even non- 
hermitian class sum operators will have real eigenvalues for some of the irreducible 
representations (eg the identity representation), but the total array of eigenvalues must 
contain some complex elements. Criterion (i) as given above is also the sufficient 
condition to ensure that the coefficients cJKN appearing in the class multiplication table 
are symmetric in any two subscripts (Killingbeck 1970a). 

3. Linear mappings and tensor operators within the group algebra 

The group algebra consists of all linear combinations of form Z Zk&,  the Rk being 
group elements (often represented by operators) and the z k  complex numbers. There 
are two types of linear mapping within this algebra which are immediately suggested 
by the usual procedures of quantum mechanics. The first one involves regarding the 
elements of the algebra as ‘wavefunctions’, with the individual group elements acting 
from the left as ‘operators’, according to the rule 

with RmRk being found from the group multiplication table. If we take the individual 
group elements as operands (ie we set all z k  equal to 0 or 1) then the result is that each 
group element (regarded as an operator) is represented by a g x g permutation matrix, g 
being the order of the group. This, of course, is the so-called regular representation of 
the group (Weyl 1931), and the mapping is traditionally called a left translation. By 
using the usual projection operator methods it is then possible to project out elements 
F y )  within the group algebra which belong to the various irreducible representations 
of the group. A second kind of mapping which can be used in the group algebra is one 
which takes account of the fact that the group operators are often represented by 
quantum mechanical operators. The type of transformation appropriate to operators 
is of form 

Z k R k  -+ 1 z k ( R m R k R , ‘ )  
k k 

and we can apply this within the group algebra also. The definition of irreducible tensor 
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operators for a finite group of operators (Wigner 1940) involves exactly this kind of 
mapping 

Here R is any group operator and the Tj"' are the component operators belonging to 
the irreducible tensor family with representation matrices DG'. We can apply the same 
character analysis and projection techniques when dealing with transformation (5) as 
we use in connection with equation (4). Indeed, if we have any group of linear mappings 
M(Rk)  which is in one-to-one correspondence with the group elements R, and which 
operates within the group algebra, we can form the combination 

for any X in the group algebra. The resulting element of the algebra then transforms 
according to the i t h  irreducible representation under the mapping A. This last proviso 
is important, for the following reason. The regular representation of a group contains 
each irreducible representation at least once, so that we can apparently obtain elements 
of the group algebra belonging to any irreducible representation of the group. However, 
they only belong to their given symmetry types with respect to the mapping (4), and in 
general do not have such simple transformation properties un#er the mapping (5). 
For example, there are no elements in the 6m2 group algebra which belong to the B ,  . 
B ,  or E ,  symmetry types of 6m2 for the mapping (6 )  (Killingbeck 1970a), although there 
are elements which belong to those symmetry types for the mapping (4). It is, of course, 
the mapping (5) which must be used if we wish to interpret the resulting symmetry 
adapted elements of the group algebra as tensor operators which act on quantum 
mechanical wavefunctions. As an example of a more general type of mapping which 
could be used in conjunction with (7), we may quote the group of mappings defined by 

M(R)X = R X U  ( U 2  = U )  (8) 

for any idempotent element U of the group algebra. The choice U = 1 gives mapping (4). 
Suppose that we use the character projection operator (7) and the mapping (5) to 

obtain an element of the algebra which belongs to the i t h  irreducible representation. 
We have, since all elements in the same class have the same character 

where j is a class label and ej a class sum operator. Since every group element commutes 
with each Vj, it follows that all the group algebra elements of type (9) are of A l  (identity) 
type from the point of view of the mapping (5) and can be regarded as A ,  tensor operators. 
By acting on the identity element of the group with the operator (9) and varying the 
choice of A we can obtain elements of the group algebra corresponding to each irreducible 
representation, but they will all be of A ,  type when regarded as tensor operators under- 
going the mapping (5). The element displayed in equation (9) is, in fact, the only element 
of A symmetry type (except for a trivial phase factor) if the A representation is one 
dimensional. We have 

= [X'"''(X)] - 1 X'A'*(Rk)Rk 
R k  
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by using the group multiplication property, and taking X to be any group element. 
This is in accord with the result that each one dimensional irreducible representation 
appears Once in the regular representation. The character projection operator which 
yields a tensor operator of the I symmetry type acts on a group element X as follows 

and thus yields only linear combinations of elements from within the same class as X ,  
whereas the operator (9) mixes elements from different classes. It is essentially this 
difference which leads to the fact that for some groups (eg 6m2) tensor operators of some 
symmetry types do not exist in the group algebra. The types of tensor operator which 
can be formed from the elements of a given class can be found by using character analysis 
in the standard way; for a mapping &(Rk) of the type discussed in connection with 
equation (8), the appropriate definition of character to be employed is as follows : 

(12) 
number of elements of j 
mapped into themselves by &(R). 

- - character of set j 
with respect to element &(R) 

This is adequate here, since both mappings (4) and (5) take one group element over into 
exactly one group element. It was in this way that the A , ,  A ,  and E ,  tensor operators 
in the algebra of 6m2 were obtained, while B ,  , B ,  and E ,  types were proved nonexistent 
within the algebra. The mechanism of the construction was not explained in the earlier 
paper (Killingbeck 1970a), which merely quoted the results; in the present paper the 
procedure has been described for more general types of mapping. 

4. Tensor operators for direct product groups 

The group algebra of the group 6m2 was previously found (Killingbeck 1970a) to contain 
only tensor operators of A , ,  A ,  and E ,  types. We shall now show that this result can be 
explained by using the fact that 6m2 is a direct product group. The two groups involved 
in the product are the group 32 and the group (1, c)  consisting of the identity element 
and the reflection operation in a mirror plane perpendicular to the three fold axis of 32. 

The classes of 32 may be set out as follows: (1); (3, 3,); (2,2’, 2”). We start by giving 
some examples which illustrate the general theory of§ 3. Suppose we wish for an element 
of symmetry type A ,  in the 32 group algebra. The three classes have characters 1,1, - 1, 
respectively, for A ,  and we find the elements 

1+3+3’-2-2’-2” (13) 

3-3, (14) 

where (13) refers to mapping (4) and (14) to mapping (5). A more complicated problem 
is the finding of two elements (tensor operators) of E symmetry type for the mapping (5). 
The traditional approach would involve using projection operators incorporating the 
detailed representation matrix elements. We can proceed in another way as follows. 
The group operator 3 has the eigenvalues 1 for those functions belonging to A ,  or A , ,  
and has the character - 1 for the E family. It follows that the eigenvalues of 3 within the 
E family must be w and w2,  where w = exp(i2~/3). If we use this classification of the 
two members of the E family, we can project out the ( E ,  w )  member by ‘knocking out’ 
that part of an operand which has eigenvalues 1 or w2 for the operator 3. We can apply 
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this approach for either of the mappings (4), (5 ) ,  but consider only (5) here. We find for 
the effect of the projection on element 2 

323’-2 = 2’-2 (1 5a) 

(1 5h) 

In (15a) eigenvalue 1 is removed, in (156) eigenvalue w2 is removed. The resulting 
element of the group algebra is a tensor operator of ( E ,  w)  type. The ( E ,  0’) element 
can be obtained by interchanging w and w2 in (156). 

By using the methods of 6 3, as exemplified in the last paragraph above, we can obtain 
the tensor operators in the 32 group algebra. On adjoining the reflection element c 
to 32 in order to form 632, the effect on the mappings (4) and (5) is diflerent. For example, 
if q is a symmetry adapted element of the 32 algebra with respect to mapping (4) and X 
is any element of 32, we have 

3(2‘- 2)3’ - ~ ’ ( 2 ’  - 2) = 2“ - 2’ - ~ ’ ( 2 ’  - 2) 

= 2“ + w2‘ + W22. 

x(q+Cq) = Dg’(x)(Tk,o&) (1  6a) 

oX(TjfaT,) = ~ D ~ ’ ( X ) ( T , ~ C T , ) .  ( 16b) 

k 

k 

This shows that 632 symmetry adapted elements can be formed by taking the obvious 
linear combinations of the elements T j  and aq, and this can be done for every 32 
irreducible representation. If we attempt to do the same for the mapping ( 5 )  we find 

(17a) X (  T j  + c T ) X  - = 1 D$,,’(X) ( T, & cT,) 

OX(? c ~ ) ( c X ) -  = C DL;’(X)(T, & oT,). (17b) 

k 

k 

(We note that the Tj in equations (16) and (17) are not the same!) The result (176) arises 
because CT commutes with every X in 32, and it shows that the only 632 tensor operators 
obtainable within the 632 group algebra are those which are invariant under the c 
mapping. This is why no B ,  , B ,  or E ,  tensor operators were found in the earlier paper. 
The group ( 1 , ~ )  has only A ,  (identity) type tensor operators, namely the class sums 
1 and 0 (or any linear combination of them), and this is also the case for any abelian 
group, The results obtained here for 632 may at once be generalized as follows ; if the 
group G = A x B is a direct product group, then tensor operators of the Kronecker 
product symmetry type T(A) x T’(B)  cannot be found in the G group algebra if T(A) 
tensor operators do not exist in the A algebra or T‘(B) tensor operators do not exist in 
the B algebra. The proof depends on the fact that every transformation of type (5) for 
G factors into separate A and B parts. It may be seen intuitively as follows ; if we regard 
the A elements as ‘coefficients’ in a generalized B group algebra, we require a r’ type 
element in this algebra. If we cannot find such an element using complex coefficients 
then we cannot find it by using A group elements as coefficients either. It follows that 
in this case there can be no G algebra element of T(A) x T’(B)  type. 

5. Conclusion 

It should be stressed that this paper deals with the construction of tensor operators 
within the group algebra. If such operators can be found, then they could act as operator 
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equivalents for quantum mechanical operators of the same symmetry type, as explained 
by Killingbeck (1970a). That they cannot be found, places no restriction on the allowed 
types of physical operator. For example, the operator z belongs to the B ,  symmetry 
type for 6m2, and to the A ,  symmetry type for (1, a), but has no operator equivalent 
within the 6m2 group algebra. Both the original operators and their operator equivalents 
must have the same transformation properties, of course. The 32 operators ( E ,  w),  ( E ,  0’) 
correspond to complex coordinate operators such as xkiy .  To obtain an E pair 
equivalent to (x, y )  we could use the eigenvalue (k 1) of operator 2 to label the two 
members of the E family, with the x axis taken as the rotation axis. 
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